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Our knowledge of the brain changes that enable habits to be

formed continues to grow rapidly. As a key hub for habits, many

studies have focused on neurobiological processes related to

habits in the striatum. Attention has been paid to the

contributions of the direct and indirect pathways, interneurons,

dopaminergic inputs, and potential cortical and amygdala

influences. We highlight this research here and conclude with a

discussion of several additional topics that are also being

addressed to propel our understanding of habits further

forward.
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Advances in research on habits are being made in many

realms. There is a growing understanding of how habit

formation relates to molecular and physiological mecha-

nisms of neuronal plasticity as well as how varieties of

neurons and neural pathways contribute to habits [1–4],

which we review here. Several major behavioral assays for

habits have been in use in order to provide operational

measures that distinguish behaviors that are habitual

versus those that are purposeful or cognitively driven.

One measure for habits is to show that behavior is

insensitive to changes in the expected value of the earned

outcome. For tasks that involve learning behaviors to

achieve rewards, outcome revaluation involves a deflation

or inflation of the reward value (e.g. through conditioned

taste aversion, satiety, hunger) that occurs outside of the

task conditions. The test is whether subjects incorporate

that new knowledge about reward value into their learned

task behavior routine where the changed reward is the

outcome; when behavior immediately adjusts to reflect

the new outcome value (e.g. is reduced when the reward

has been devalued), it is thought to be goal-directed and

rooted in associations that had been learned between the
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action and the specific outcome. When behavior remains

the same as before, and is insensitive to the new outcome

change, it is regarded as habitual and driven by stimulus-

response associations. In some cases, habits are also

inferred when a learned behavior is insensitive to changes

in the received outcome. This occurs, for example, when

behavior persists despite the outcome co-occurring with

punishment (e.g. a footshock). Similar assays test behav-

ioral flexibility in response to a change in the action-

outcome contingency; purposeful behaviors adjust

rapidly to reflect new contingencies, while habits do

not. On maze tasks, habits are also inferred when naviga-

tion is driven by a response rule (e.g. turn right) rather

than a place rule (e.g. use environmental cues to signal

reward locations). Finally, high performance optimality

and vigor can also be a marker of habits. Habitual behav-

ior will exhibit trial-to-trial consistency in rapid and

routed responses, accurate responses, and responses that

lack vicarious trial-and-error head movements (i.e. delib-

erations toward choice options before action selection,

VTEs).

The basal ganglia
Dorsal striatum

In the brain, ground-zero for habits is the dorsolateral

striatum (DLS; primate putamen homologue), a basal

ganglia input structure, as it has been implicated in all

of the behavioral indices of habits noted above. DLS

disruption causes animals to favor the use of spatial cues

over response-based rules for navigation, to increase

sensitivity to outcome value and action-outcome contin-

gency changes, to reduce responding for an outcome

paired with punishment, and to increase variance in

action structure [1,2,5–7]. This habit promoting role is

specific to the DLS within the larger striatum. In fact, an

adjacent area, the dorsomedial striatum (DMS; caudate

homologue), instead promotes flexibility and goal-

directed behavior. For instance, disruption of DMS

activity reduces outcome-sensitivity and space-based

navigation, resulting in a reliance on habits instead [2].

It is unlikely that the DMS simply serves to oppose habits

as neural recording and imaging studies routinely impli-

cate activity in this brain area as signaling relationships

between action choice and outcomes, suggesting an

active role in goal-directed behavior [8]. Thus, the gen-

eral consensus is that parallel and competing circuits exist

in the brain for habits and goal-directed actions, the

former DLS-related and the latter DMS-related.

A series of recent studies have attempted to uncover how

activity in the DLS, and the broader circuits within which

it is embedded, represent habit learning. This line of
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research has begun to suggest that the DLS signals

several different aspects of habits in different ways,

highlighting what we have described as a multi-

component structure of habitual behavior [4]. Two major

distinctions include signaling related to the DLS role in

performance optimization and the role in producing

behavior that is insensitive to changes in outcome value

or action-outcome contingency. For example, activity in

DLS medium spiny neurons (MSNs), the GABAergic

projection neurons of the striatum, can signal specific

movements from specific body parts, likely as a conse-

quence of major inputs arriving from the sensorimotor

cortex [9]. However, as those movements are put to use in

learning a task for reward, the neurons cease responding

to each movement occurrence [9]. This change in neuro-

nal signaling occurs as the movements become consistent

and repetitive, suggesting a role in representing perfor-

mance optimization. Yet these changes do not appear to

be related to the degree of outcome-insensitivity of the

behaviors. For example, the change occurs in head-

related activity during a head-movement task for reward,

in which head movements become outcome-insensitive,

but also occurs in lick-related neurons during a licking

task for reward in which licking remains outcome-

sensitive [10,11]. A similar conclusion has been reached

through analysis of another type of activity change in the

DLS, one consistently linked with the optimality and

vigor of behavior across several animal species: the emer-

gence of a ‘chunking’ pattern of spiking that emphasizes

the boundaries of a learned action sequence [12]. This

pattern has been shown to relate closely to the vigor of a

given action routine as it occurs, increasing in strength in

close correspondence with an increasing fluidity and

consistency of behavior as it is repeated [13,14�,15,16].
Even at the single trial level, the strength of DLS

chunking activity, particularly the activity at the initiation

of behavior, correlates with faster performance and, nota-

bly, an absence of VTEs that indicate purposefulness in

behavior. Such findings support the notion that the

chunking patterns represent the linking together of an

action chain into a single habitual unit [12]. Curiously,

though, the chunking pattern is not related to how sensitive

the behavior is to outcome value at the trial level, but its

emergence does coincide across days with the development

of outcome-insensitivity that can serve to define a habit

[14�]. Consistent with this, measurements of the overall

magnitude of activity in the DLS during task behavior, in

both human imaging and rodent neuronal recording studies,

shows a positive relationship with the development of the

outcome sensitivity measure of habit [17,18]. These collec-

tive findings raise the question of how to integrate signals in

the DLS that represent movement vigor with the outcome-

insensitivity of habits, which we touch on below.

Direct-pathway and indirect-pathway striatal neurons

Additional work has begun to dissect the habit-related

contributions of different types of MSNs within the
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striatum. Two main MSN populations of interest include

those of the basal ganglia direct pathway (striatonigral

MSNs) and those of the indirect pathway (striatopallidal

MSNs) [19]. Classically, the direct-pathway MSNs are

thought to promote the performance of chosen move-

ments while the indirect-pathway MSNs inhibit move-

ment or promote alternate movement options [19]. New

methodologies have paved a way for monitoring and

manipulating these MSNs by capitalizing on their dis-

tinct molecular profiles. For example, direct-pathway

MSNs contain the excitatory G-protein-coupled dopa-

mine D1 receptor, while indirect pathway MSNs instead

contain the inhibitory G-protein-coupled D2 receptor

(as well as the adenosine A2A receptor) [20]. Tradition-

ally, the view is that movements are facilitated by

dopamine influx that increases activity in the direct-

pathway (via D1 receptors) and decreases activity in the

indirect pathway (via D2 receptors). Yet, for habits, the

story is more nuanced.

In one study on striatum-wide signaling, reduced out-

come-sensitivity that occurs after dopamine stimulation

(i.e. habit enhancement, see also below) was found to be

related to activity in both MSN populations. Habit

enhancement was blocked by antagonism of D1 recep-

tors, which would inhibit direct-pathway MSNs. In

contrast, outcome insensitivity was augmented by antag-

onism of D2 receptors, which would increase activity in

indirect-pathway MSNs [21]. Several additional studies

report a necessary role for the indirect pathway in habit

expression based on measures of both insensitivity to

outcome value and action-outcome contingencies

[22,23]. One recent example highlighting a potentially

nuanced role for both MSN populations is an experiment

that focused specifically on the DLS. Stimulation of

direct-pathway MSNs increased task acquisition rate

and biased behavior toward an action paired with opto-

genetic stimulation (i.e. enhanced performance optimal-

ity), while stimulation of indirect-pathway MSNs

decreased task acquisition rate and increased non-

rewarded actions [24]. Moreover, relative to one another,

animals with indirect-pathway stimulation were less sen-

sitive to action-outcome contingency degradation com-

pared to animals with direct-pathway stimulation. These

results suggest an action optimization role for direct

pathway activity, and a distinct role for indirect pathway

activity in diluting the representation of action-outcome

contingencies. As both behavioral optimization and

action-outcome insensitivity can be important features

of an overall habit, these findings point toward the direct-

pathway and indirect-pathway MSNs as potentially con-

tributing distinct but complementary functions for habit

formation. Indeed, there is evidence that both MSN

populations can be engaged in tandem during optimized

behaviors, particularly at the point of action initiation

[25,26], further suggesting that both populations contrib-

ute meaningfully to habits. Intriguingly, there may be a
www.sciencedirect.com
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temporal dynamic to DLS direct and indirect MSN

activity when they are both engaged during habits. A

recent study found that habit strength in behavior was

related ex vivo to stronger activity in both MSN popula-

tions, but with activity in direct-pathway MSNs preced-

ing in time activity in indirect-pathway MSNs [27��].

There are findings from related studies suggesting that

the role of the DMS in promoting goal-directed behavior

also involves changes in both direct-pathway and indirect-

pathway MSN activity. For example, a greater ratio of

AMPA to NMDA receptors in the DMS, indicative of

long-term plasticity, is increased in direct-pathway MSNs

and simultaneously decreased in indirect-pathway MSNs

during acquisition of a goal-directed (outcome-sensitive)

lever pressing task [28]. This result suggests that activity

in direct-pathway MSNs in the DMS encourages behav-

ior to be goal-directed rather than habitual. Likewise,

disruption of striatum-wide or DMS-specific adenosine

A2A receptor function, which are expressed on indirect-

pathway MSNs and would plausibly impede indirect-

pathway plasticity, leads to habit reduction in the form

of a heightened sensitivity to outcome devaluation and

greater ability to adjust to action-outcome contingency

changes [20,29,30].

The results above clearly show the need for additional

research as the role of each MSN population may be

different depending on which behavioral measure of

habits is being studied, what timescale the populations

are compared at, and which striatal subregion is consid-

ered. One intriguing conclusion is that the classic pro-

movement (direct-pathway)/anti-movement (indirect

pathway) view of the basal ganglia may not easily apply

to the realm of habit control [25], considering, for exam-

ple, that indirect pathway activity can oppose movement

yet is also critical for habits.

Additional striatal mechanisms

There are also beginning to be signs that striatal inter-

neurons, though few in number, play a considerable role

in action learning and habits. For example, striatal fast-

spiking interneurons (FSIs), thought to be GABAergic,

exhibit a chunking-like representation of well-learned

actions similar to what is seen in MSNs, suggesting a

complementary role in encoding habits [31]. The activity

of these interneurons is also necessary for habits. In a

recent study, chemogenetic inhibition of DLS FSIs

impaired habit expression during a lever press task fol-

lowing outcome devaluation [32]. Thus, despite a relative

paucity of studies on FSI roles in habits, the evidence so

far strongly favors them being critically involved.

Another type of striatal interneuron is the cholinergic

interneuron. In the DMS, the cholinergic interneurons

are critical for updating changes in established action-

outcome contingencies [33], suggesting a role for the
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capacity of the DMS to promote goal-directed behaviors.

Activation of these cells can be sufficient to elevate

dopamine release in at least the ventral striatum [34],

raising the possibility that they participate in the ability of

dopamine input to the DLS to facilitate habitual beha-

viors. This possibility remains to be tested, however,

leaving it unclear if cholinergic signaling in the DLS

promotes habits or instead promotes goal-directed beha-

viors as it does in the DMS.

Finally, the striatum also has a striosome/matrix compart-

mentalization [35] that has not yet been studied in the

habit context. Striosomal MSNs contribute to action

stereotypy and have a privileged connectivity with nigral

dopamine neurons [36,37], making their involvement in

dopaminergic regulation of striatal function and habits

seem plausible.

Dopamine input to the striatum

As noted above, a major neuromodulatory input to the

DLS comes from dopaminergic neurons in the substantia

nigra pars compacta. These neurons are broadly thought

to modulate striatal MSN responses to excitatory inputs

and also play an important role in striatal plasticity related

to learning [19]. Suggestive of a role in habits, disruption

of the dopaminergic neurons or their synaptic terminals in

the DLS reduces several markers of habit acquisition and

habit-related striatal activity [38–40], and in turn habit

formation can be accelerated by increasing dopamine

activity [39,41,42]. Notably, an action chunking activity

pattern has been found to occur in these neurons during

performance of a well-rehearsed action sequence [16]. As

the chunking pattern can also predominate DLS MSN

and fast-spiking interneuron activity during habitual per-

formance, as noted above, this finding raises the possibil-

ity of a dopamine-DLS circuit for the sequencing of

behavior into a habitual chunk. In support, a study has

found that removing dopamine input ipsilaterally results

in a deterioration of learning-related signaling in DLS

MSNs in animals performing a maze running task [40].

We note that the role for nigral dopamine in habitual

behavior can be dissociated from movement or general

learning roles that they have. For example, in Faure et al.,
6-OHDA lesions to destroy DA input to DLS produced a

mild delay in learning but after reaching a peak level,

lesioned animals were markedly more sensitive to out-

come devaluation (i.e. less habitual) as compared to

controls [38]. Similarly, Nelson and Killcross found that

repeated amphetamine administration to augment dopa-

minergic signaling led to enhanced reliance on habit (i.e.

reduced outcome-sensitivity) with no change in learning

rate [21]. How dopamine can both promote movement

and, in a dissociable manner, promote the learning and

performance of habits is an interesting topic for future

study.
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Beyond the basal ganglia
The basal ganglia are not the only brain areas that

participate in habitual behavior. One curiosity is that

an area of the neocortex, the infralimbic (IL) cortex in

rodents, is also necessary for habits. Perturbations of the

IL cortex reduce both habit acquisition and expression

[14�,43,44,45��]. Evidence indicates that the IL cortex

promotes the strategy of using a habit on-line during

behavior, rather than storing the habit learning details

[43,45��]. Intriguingly, the IL cortex is not known to be

connected directly with the DLS [46]. This raises the

question of whether multiple circuits exist in service of

habits, one IL-related and one DLS-related, or whether

the IL cortex could circuitously interface with the DLS as

part of a larger habit-promoting network. In support of the

latter possibility, the IL can modulate the central nucleus

of the amygdala (CeA) [47] which in turn can project to

the SNc [48], the source of DLS dopamine. Suggestive of

a habit role for this circuit, Lingawi and Balleine showed

that pre-training functional disconnection of the CeA

with the DLS, created by making lesions to these struc-

tures contralaterally, increased outcome sensitivity in

otherwise habitual animals [49��]. Murray et al. [50�] also

found that the development of habitual characteristics of

cocaine seeking, as measured by continued responding in

the presence of a drug cue after prolonged training,

required functional connectivity between the CeA and

dopamine release in the DLS, while the CeA-DLS inter-

action was not as relevant to cocaine seeking prior to this

stage. Moreover, the well-documented acceleration of

habit formation that occurs following stress exposure

[5,51] can correspond with increased functional activity

in amygdala and putamen (primate DLS homologue) as

measured in cue-response tasks [52,53]. A picture

emerges from this work that IL cortex could serve as

an early node for supporting basal-ganglia-based habits

through the CeA, nigra, and DLS. One possible circuit

underlying this interaction, as suggested by Lingawi and

Balleine, is a disinhibitory mechanism involving projec-

tions from the IL cortex to intercalated cell masses in the

amygdala, with those intercallated neurons sending inhib-

itory projections to the CeA. The CeA would then send

inhibitory projections to nigral dopamine neurons, which

would send dopaminergic efferents to DLS. However,

complicating the picture of an IL-to-DLS stream of

information processing is a finding in a rodent maze

running task that learning-related changes in DLS neu-

ronal activity can precede those in the IL cortex as habits

are formed [14�]. Despite remaining uncertainties regard-

ing the details, mounting evidence points to important

roles for neocortex and amygdala in modulating what is

presumed to be a basal-ganglia storehouse for habits.

Challenges
Habit research faces familiar neurobiology questions con-

cerning key circuit nodes and connections, relevant neu-

ral activity dynamics, and molecular mechanisms for
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plasticity. We highlight a few interesting, if complex,

questions that have received recent attention.

How is the strength of a habit regulated?

By virtue of gradations in behavioral and neural markers

of a habit, including levels of outcome sensitivity and

performance vigor, it is likely that habits can occur with

graded strength. Neurally, stronger habits could arise

through stronger recruitment of the habit system, weak-

ening of the competing goal-directed system, or both.

Weaker engagement of brain areas promoting cognitive

control has coincided with habit strength in several stud-

ies [15,17,44,54,55], and directly dampening activity in

such networks can lead to stronger habits [2,45��].
Impaired processing of action-outcome associations lead-

ing to abnormal habit-like thoughts and actions has like-

wise been implicated in human disorders [56,57]. It is

equally possible that a waxing and waning of activity in

the habit system itself can modulate habit strength

[1,2,27��,58,59], though the evidence is more ambiguous.

There is a link between the strength of DLS activity

during performance and outcome insensitivity in some

studies [17,18], while in other studies performance-

related DLS activity has been found to change rapidly

and in a manner unaligned with the more slowly devel-

oping outcome-insensitivity in behavior [14�,15,60].
There is at least clear evidence that the foundation of

a habit can be acquired rapidly since removing function-

ality in the goal-directed system relatively early in task

experience immediately produces a behavior that is habit-

ual (in the sense of being independent of outcome value

and action-outcome contingency) [2,45��]. Notably, in

one maze study, changes in DLS signaling related to

task rewards and errors occurred more slowly and in close

alignment with behavioral outcome-insensitivity; these

changes included a loss of error-related activity and a

generalization of reward-related activity [61��]. Such

results raise the possibility that plasticity in DLS related

to habits can emerge at both early and late timescales.

Late-phase involvement of the nigral-DLS system in

behavior has also been noted to occur during drug seeking

as it grows to be highly persistent [62–64]. Yet, as with the

formation of basic habits, DLS activation can also precede

addiction development [65]. A related issue for under-

standing habit strength modulation is the brain basis of its

suppression or extinction, which has been tackled in part

by studies showing that the DLS and IL cortex them-

selves can directly participate in the process [27��,44,66].
Increased engagement of cognition-promoting networks

is likely to suppress habits as well [3].

How to understand action sequences?

In reality, habits are often chains of different actions.

Laboratory investigations of such heterogeneous action

chains support a view that sequential actions become

associated with one-another, beyond their individual

stimulus and reward associations, and that the encoded
www.sciencedirect.com
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goal of an initial action can be a subsequent action. This

conclusion has been drawn from studies showing that

devaluing the outcome of an action chain can either affect

or fail to affect the chained responses together [67,68,69�].
Extinction of an element of the chain reduces responding

on the other paired element, confirming that the actions

themselves have become associatively linked [69�]. When

action chains are affected by a revaluation of the expected

outcome, actions temporally proximal to reward exhibit

greater sensitivity compared to reward-distal actions,

suggesting that initial actions might be the most habitual

of the sequence [69�,70]. At the neural level, key ques-

tions are the conditions under which the reward proximity

of an action is encoded in signaling patterns and how/

whether secondary actions are represented during initial

actions (and vice versa).

Do habits that are acquired through negative

reinforcement work the same?

Relatively little is known about the rules governing habits

that are acquired in service of avoiding negative out-

comes. The noted acceleration of habits after stress

and evidence that strong avoidance habits that can form

in OCD patients [71,72] suggest that behaviors acquired

to evade unpleasant states might become habits quite

rapidly or strongly. Of note, using the response-strategy

measure of navigational habits, animals trained to escape

a water maze favor a habitual response strategy remark-

ably early on in task experience [73]. An interesting

question now is the extent to which negatively and

positively reinforced habits will share the same neural

mechanisms.

How do we define a habit?

It is tempting to draw a line in the sand where behaviors

that cross are called habits, such as any residual respond-

ing for a devalued or non-contingent reward. The notion

is that if a behavior appears to lack representation of the

expected outcome, then it is best explained in S-R terms.

Similarly, on the neurobiological side, ‘habit’ is often the

default interpretation of any behavior that requires the

DLS. We argue that this sort of stance overlooks the

growing complexity for defining habits and basal ganglia

function [74,75]. For example, there can be a disconnect

between measures of outcome insensitivity and measures

of action optimization at the trial level [74]. Interestingly,

action-chunking activity in the DLS corresponds closely

to trial-level variations in performance vigor, suggesting a

particularly close relationship between DLS and that

habit characteristic above others [14�]. Moreover, the

habit measure of a maze running response strategy

(e.g. turn right) does not necessarily meet the out-

come-insensitivity measure of habits, though can become

outcome insensitive with over-training [76]. These mis-

matches between behavioral measures of habit, alongside

the diversity of neural signatures for habits noted above,

raise the possibility that brain mechanisms of habit may
www.sciencedirect.com 
best be understood as contributing components to an

overall psychological–behavioral repertoire rather than

as servicing or not servicing a simple S-R association

[74]. One interesting example to consider in this regard

is sign-tracking behavior (a.k.a., autoshaping), in which

physical Pavlovian reward cues are pursued and inter-

acted with. Like a habit, this behavior is insensitive to

outcome devaluation [77,78]. Yet, more in line with a

Pavlovian conditioned response, it can also flexibly adjust

yet persist in the face of reward omission and can be

exquisitely sensitive to new motivational states [79,80].

Neural mechanisms of sign-tracking include limbic cir-

cuits [81] as well as the DLS [75,82]. Should we define

sign-tracking as a Pavlovian motivational response or as an

S-R habit? Or should we treat each brain process related

to sign-tracking as potentially contributing components to

the phenomenon, some of which may generate habit-like

characteristics? The latter approach might be most fruit-

ful, as would an approach to considering potential com-

ponents of habits themselves.

Conclusion
It is remarkable how something as intuitively simple as a

‘habit’ exhibits such great complexity when probed sci-

entifically. Recent behavioral neuroscience work has

indicated that habits can occur in graded strength, com-

pete with other strategies for control over behavior, are

controlled in part moment-to-moment as they occur, and

incorporate changes in neural activity across multiple

timescales and brain circuits. One is left with the impres-

sion that varied types of questions might be useful to raise

now, such as those highlighted in the preceding section.

We additionally suggest the potential utility of using

habit phenotypes as experimental variables to more fully

understand how habits are sculpted and expressed by

different signaling components in the brain.
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