Sign-tracking behavior is sensitive to outcome devaluation in a devaluation context-dependent manner: implications for analyzing habitual behavior

Kenneth A. Amaya,1,2 Jeffrey J. Stott,1,2 and Kyle S. Smith1

1Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA

Motivationally attractive cues can draw in behavior in a phenomenon termed incentive salience. Incentive cue attraction is an important model for animal models of drug seeking and relapse. One question of interest is the extent to which the pursuit of motivationally attractive cues is related to the value of the paired outcome or can become unrelated and habitual. We studied this question using a sign-tracking (ST) paradigm in rats, in which a lever stimulus preceding food reward comes to elicit conditioned lever-interaction behavior. We asked whether reinforcer devaluation by means of conditioned taste aversion, a classic test of habitual behavior, can modify ST to incentive cues, and whether this depends upon the manner in which reinforcer devaluation takes place. In contrast to several recent reports, we conclude that ST is indeed sensitive to reinforcer devaluation. However, this effect depends critically upon the congruence between the context in which taste aversion is learned and the context in which it is tested. When the taste aversion successfully transfers to the testing context, outcome value strongly influences ST behavior, both when the outcome is withheld (in extinction) and when animals can learn from outcome feedback (reacquisition). When taste aversion does not transfer to the testing context, ST remains high. In total, the extent to which ST persists after outcome devaluation is closely related to the extent to which that outcome is truly devalued in the task context. We believe this effect of context on devaluation can reconcile contradictory findings about the flexibility/inflexibility of ST. We discuss this literature and relate our findings to the study of habits generally.

[Supplemental material is available for this article.]
previously rewarding outcome like food is made less rewarding (typically by pairing it with injections of a nauseagenic drug, for example, lithium chloride (LiCl)). Animals are then tested to determine whether they continue to perform the behavior related to this now-devalued outcome in extinction conditions. In some studies, ST behaviors persist and appear to be habitual. Several recent studies support the conclusion that ST behavior in rodents, and ST-like behavior in humans, is resistant to change and is generally unaltered by changes in outcome value (Morrison et al. 2015; Nasser et al. 2015; Patitucci et al. 2016; De Tommaso et al. 2017; Vandaele et al. 2017; Smedley and Smith 2018).

However, there are notable exceptions. Davey and Cleland (1982) and Robinson and Berridge (2013) have demonstrated robust and even immediate effects of reward revaluation on ST behavior, showing that ST can exhibit considerable flexibility more in line with a model-based behavioral or motivational system (Dayan and Berridge 2014). Of particular note, (Derman et al. 2018) recently found evidence directly in conflict with the above studies. They showed that ST behavior can in fact display sensitivity to outcome devaluation. Collectively, there appears to be evidence for ST to be both flexible and inflexible, and both outcome-sensitive and outcome-insensitive. Understanding which is true, or, more specifically, why opposing outcome devaluation effects are found, carries importance for interpreting ST. Since variations in outcome devaluation sensitivity also occur in more traditional instrumental tasks such as lever pressing or maze running, this question is potentially a broadly important one.

Focusing on the outcome-devaluation assay for behavioral flexibility/inflexibility, we have noted in our own work and in the literature that the devaluation procedure itself might play a major role in the test outcome. In other words, variation in how (more specifically, where) the reward-LiCl pairings are done can lead to an impression that ST is either inflexible and outcome-insensitive, or that ST is flexible and outcome-guided. Thus, we undertook a series of experiments aimed to clarify the effect of devaluation on ST behavior, and the role the reward-LiCl pairing environment has on subsequent devaluation sensitivity in ST. Attention was paid to how devaluation in or out of the task chamber transferred to in-task ST behavior as well as to the in-task value of the reward itself. In Experiment 1, we examined the effect of a novel outcome devaluation procedure on postdevaluation ST rates using a discriminative two-lever CS conditioning design. We found that ST was devaluation-sensitive with this protocol. In Experiment 2, we determined whether LiCl injections alone in the task context could account for the efficacy of this procedure: they could not. Experiment 3 extended the findings from Experiment 1 to nondiscriminative single-lever CS preparations. Finally, in Experiment 4, we directly compared the effects of devaluation when it was administered inside or outside of the task environment, which turns out to play a critical role. Altogether, we provide evidence that ST can show sensitivity to reinforcer devaluation and conclude that ST is mediated a great deal by its relationship with the value of the rewarded outcome. These results carry broad implications in the sense that the location of devaluation procedures can carry great consequence for determining whether behaviors are outcome-sensitive (model-based, goal-directed) or outcome-insensitive (model-free, habitual).

Results

Experiment 1

Experiment 1 directly assessed outcome-devaluation sensitivity of ST behavior. See Figure 1A for a schematic of the experimental procedures. Rats (n = 16) were given a magazine training session followed by 12 daily sessions of ST training where a lever cue (CS+) was presented for 10 sec followed by the delivery of two grain pellets. We used two pellets as reward because on a rare occasion a pellet does not get delivered by the device, so using just one can lead to the odd trial where a pellet is not delivered. Further, we adopted the same procedure that we have used previously, in order to more directly compare our results to past studies (Chang et al. 2015, 2018; Smedley and Smith 2018; Smedley et al. 2019). A second lever was presented on separate trials but was not predictive of reward (CS−). 25 CS+ and 25 CS− trials were administered during each session with an average intertrial interval (ITI) length of 60 sec. Predevaluation probe sessions consisting of a brief extinction session (5 CS+, 5 CS− presentations) and a fully rewarded reacquisition session (25 CS+, 25 CS−) were conducted to establish baseline response levels before proceeding to outcome devaluation. After training, rats were behaviorally matched as determined by mean response rates and split into two groups, Group LiCl-Pellet (n = 8), which received pellet reinforcers and then LiCl injections during devaluation, and Group Saline-Pellet (n = 8), which received pellet reinforcers and then saline injections during devaluation. A hybrid devaluation approach was used where outcome devaluation was conducted in transport chambers for two sessions then conducted in operant chambers for subsequent sessions. Postdevaluation probe sessions, structured similarly to predevaluation probes, were then conducted. Magazine entry data throughout the experiment was examined and all figures and statistics can be found in Supplemental Figure 1 and Supplemental Table 1. If ST behavior is guided by outcome value, then rats given LiCl-reward pairings in this multienvironment way should show significantly decreased lever-pressing behavior when compared to saline controls.

Acquisition

The mean presses per minute (ppm) over the course of training is presented in Figure 1B. To compare rates of responding, a linear mixed model using ppm as the dependent variable and fixed effects of CS type, group, and logarithmic session (sessions 1–12; logSession) as well as an interaction between CS type, group, and session with random intercepts for individual animals and learning curves were included. The logarithmic fit of session produced a model with a lower Akaike information criterion (AIC, 2824.5) than a model using linear session (2837.0).

There was no significant effect of Group (estimate: 0.79 ppm; confidence interval (CI): –2.63–4.22; P = 0.66), showing that Group Saline-Pellet and Group LiCl-Pellet did not differ on average in ppm. There was a no effect of logSession (estimate: 0.94 ppm; CI: −0.97–2.85; P = 0.35), showing no overall increase in lever presses over training. Importantly, there was a significant effect of CS type (estimate: 5.75; CI: 3.57–7.92; P < 0.001) and a significant interaction between CS type and logSession (estimate: 3.64; CI: 2.44–4.84; P < 0.001). Further, there was not a significant Group by logSession interaction (estimate: −0.40; CI: −2.32–1.51; P = 0.68) nor Group by CS type interaction (estimate: −0.27; CI: 2.94–1.41; P = 0.49). There was not a significant CS-type by Group by logSession interaction (estimate: 0.22; CI: −0.98–1.41; P = 0.724). Magazine entries made by groups similarly decreased to very low levels over the course of the training sessions (Supplemental Fig. 1A).

Together, these results indicate that animals readily discriminated between the CS+ and CS−, as manifested in the number of lever presses made during respective presentations of these stimuli throughout training, and that there was no difference between the groups in how they interacted with the CS+ and CS− as a function of training sessions.

Outcome devaluation

Rats received two devaluation pairings in transport boxes, and the following three pairings in operant chambers. This was done to

www.learnmem.org

Learning & Memory
encourage generalization of the learned aversion to the testing context (operant chambers). The mean percentage of pellets consumed during each day of outcome devaluation is presented in Figure 1C. A generalized linear mixed model was created to analyze fixed effects of Session, Group, and Group by Session interaction with random intercepts for individual rats.

Here, there were effects of Session (odds ratio (OR): 0.65, CI: 0.55–0.76, \(P < 0.001 \)), Group (OR: 598.90, CI: 306.84–1168.97, \(P < 0.001 \)), and a significant Group by Session interaction (OR: 4.31, CI: 3.67–5.07, \(P < 0.001 \)). Thus, Group Saline-Pellet was far more likely to consume pellets than Group LiCl-Pellet on Day 5, the final day of outcome devaluation. Additionally, pellet consumption across all animals became less likely with each successive session and animals in different groups changed their pellet consumption differently over sessions, as indicated by the significant interaction between Group and Session. Interestingly, there was a relative increase in the proportion of pellets consumed from Day 2 to Day 3 of outcome devaluation in Group LiCl-Pellet, which was the first session of outcome devaluation conducted in the operant chambers. A Wilcoxon signed rank test revealed that animals in Group LiCl-Pellet significantly increased their pellet consumption between these 2 d (\(V = 1 \), \(P = 0.021 \)), suggestive of poor taste-aversion generalization from transport boxes back to the operant chambers.

Devaluation sensitivity in extinction

Responding during pre- and postdevaluation extinction sessions was compared. Predevaluation ST rates by group and session are presented in Figure 1D. A linear mixed model using response rates as the dependent variable and fixed effects of Group, Session, and the interaction between Group and Session with random effects for individual rat starting points was created. There was a significant effect of Group (estimate: 40.20, CI: 8.44–71.96, \(P = 0.022 \)), but no effect of Session (estimate: 10.95, CI: −3.16–25.06, \(P = 0.148 \)). However, there was a significant interaction between Group and Session (estimate: −32.10, CI: −52.05–(−12.15), \(P = 0.006 \)). There was slight increase in magazine entries made over extinction sessions, but there was no effect of group, nor an interaction between group and session, was observed (Supplemental Fig. 1B).
Magazine entries remained very low. Together, these data indicate that, across the pre- and postdevaluation extinction test days, Group Saline-Pellet displayed more ST behavior than Group LiCl-Pellet but there were equivalent levels of ST between sessions. Ultimately, the interaction between Group and Session shows the differential drop in ST behavior between Group LiCl-Pellet and Group Saline-Pellet over sessions that is indicative of sensitivity to outcome devaluation.

Devaluation sensitivity in reacquisition

Next, responding during pre- and postdevaluation reacquisition sessions was compared. Predevaluation ST rates in reacquisition are presented in Figure 1E. A linear mixed model was created as above. The results here were similar to those seen for extinction test days, as there was a significant effect of Group (estimate: 25.11, CI: 1.95–48.28, P = 0.043), but no effect of Session (estimate: 6.19, CI: −3.22–15.61, P = 0.215). However, there was a significant interaction between Group and Session (estimate: −25.14, CI: −38.46–(−11.83), P = 0.002). The two groups differed over time in how they changed their ST rates, with Group LiCl-Pellet showing less ST than Group Saline-Pellet after devaluation. Magazine entries were also examined; they were low and we did not observe any effects (Supplemental Fig. 1C).

To confirm the thoroughness of the outcome devaluation procedure, the number of pellet reinforcers remaining in magazine food cups following the postdevaluation reacquisition test was recorded and are presented in Figure 1F. As these data are not normally distributed, a Wilcoxon rank-sum test with continuity correction was performed and revealed a significant effect of Group (W = 25.11, P < 0.001), meaning that animals in Group LiCl-Pellet ate significantly less than animals in Group Saline-Pellet during the postdevaluation reacquisition probe session.

Overall, these data show that the outcome devaluation protocol used here significantly decreased ST rates of animals in the LiCl-paired condition. This was true both in extinction and during reacquired reacquisition sessions and is further supported by animals’ rejection of pellets during the postdevaluation reacquisition test.

Experiment 2

In the previous experiment, rats given LiCl injections decreased their ST rate compared to animals given saline. The possibility remains that animals experiencing LiCl injections in the conditioning chambers could have developed a general aversion or fear response to the chamber context. If animals developed a conditioned aversion to the chambers due to the LiCl experience alone, it could manifest as decreased ST during the test sessions. To test this possibility, rats in Experiment 2 (n = 16) underwent training as before. For the devaluation procedure, all rats received LiCl injections in the holding boxes for the first two injections and conditioning chambers for the last three injections (as in Experiment 1). Half of the subjects were given pellet reinforcers before each injection (Group LiCl-Pellet, n = 8), while the other half of the subjects received nothing before injection (Group LiCl only, n = 8). Magazine entry data throughout the experiment was examined and all figures and statistics can be found in Supplemental Figure 1 and Supplemental Table 1. If an aversion to the devaluation context (conditioning chambers included) was responsible for the decreased ST we observed in Experiment 1, then in Experiment 2 both groups should show a similar decrease in ST after extinction.

Acquisition

The mean ppm over the course of training are presented in Figure 2B. The same linear mixed model structures used in Experiment 1 were used here to compare CS+ and CS− responding between groups over time.

There was no effect of Group (estimate: 0.95 ppm; CI: −1.71–3.62, P = 0.49) but there was a significant effect of logSession (estimate: 2.62 ppm; CI: 0.69–4.56; P = 0.015). Importantly, there was a significant effect of CS-type on responding (estimate: 3.99; CI: 1.40–6.57; P = 0.003). There were not significant interactions between Group and logSession (estimate: −0.42 ppm; CI: −2.36–1.52; P = 0.674) nor Group and CS-type (estimate: 1.01; CI: −1.58–3.59; P = 0.45), meaning that Group LiCl-Pellet and Group LiCl-Only did not differ in how they increased lever interaction rates over training sessions nor in their preferential interaction with the CS+ over the CS−. However, there was a significant interaction between CS-type and logSession (estimate: 4.60; CI: 3.18–6.02; P < 0.001), showing that CS+ interactions increased over training sessions. Finally, there was no significant interaction between CS-type, Group, and logSession (estimate: −0.94; CI: −2.36–0.48; P = 0.20), showing that both groups similarly increased responding on the CS+ over sessions. Additionally, magazine entries made by animals in both groups similarly decreased over sessions (see Supplemental Fig. 1D).

Outcome devaluation

Devaluation procedures were the same as in Experiment 1, with the exception that Group LiCl-Only received no pellets before LiCl injections. The mean percentage of pellets consumed on each devaluation day by group is presented in Figure 2C. Because animals in Group LiCl-Only did not receive any pellets, their consumption could not be analyzed. Therefore, analysis of consumption for Group LiCl-Pellet alone was conducted. A generalized linear mixed model with fixed effect of Session and random intercepts for individual rats was created.

This model revealed an effect of Session (OR: 0.34, CI: 0.30–0.38, P < 0.001), indicating that, as sessions progressed, the likelihood of pellet consumption decreases. Similar to Experiment 1, there is a relative increase in the proportion of pellets consumed from Day 2 to Day 3, the first day that animals were given pellet access in operant chambers during outcome devaluation (N = 0, P = 0.014), indicating that animals may not have fully generalized the taste aversion from one devaluation context to the other.

Devaluation sensitivity in extinction

CS+ responding during pre- and postdevaluation extinction sessions are compared in Figure 2D. A linear mixed model was created as above. There was no effect of Group (estimate: 21.65, CI: −4.57–47.87, P = 0.115) or Session (estimate: −3.55, CI: −12.77–5.67, P = 0.461), but there was a significant effect of the interaction between Group and Session (estimate: −14.90, CI: −27.93–(−1.87), P = 0.040). Magazine entries were also examined with no effects observed (see Supplemental Fig. 1E). These data indicate that, surprisingly, there was equivalent levels of ST both across days and between groups overall. However, importantly, the significant interaction is evidence that devaluation was sufficient to drive a differential change in ST between groups over time.

Devaluation sensitivity in reacquisition

Next, CS+ responding during pre- and postdevaluation reacquisition sessions are compared in Figure 2E. There was an effect of Group (estimate: 24.69, CI: 2.89–46.49, P = 0.034), but no effect of Session (estimate: −1.52, CI: −9.16–6.12, P = 0.702), and a significant interaction between Group and Session (estimate: −22.47, CI: −33.28–(−11.66), P = 0.001). There was slight increase in magazine entries during reacquisition sessions over sessions, but
no effect of group, nor an interaction between group and session, was observed (and entries were low in number; Supplemental Fig. 1F). These results show that Group LiCl-Pellet decreased ST in reacquisition to a greater extent than Group LiCl-Only. Figure 2F shows pellet consumption during reacquisition. A Wilcoxon rank-sum test with continuity correction shows a significant effect of Group on pellets consumed (W = 64, \(P < 0.001 \)), reflecting a far greater rejection in Group LiCl-Pellet compared to Group LiCl-Only. Overall, these data show that the outcome devaluation protocol used significantly decreased ST rates of animals selectively in the reinforcer-paired condition.

Experiment 3

Experiments 1–2 used a discriminative stimulus training paradigm, which included the presentation of CS+ (food-paired) and CS− (nonpaired) levers. Our group and others have used this discriminative ST procedure to study the neural and behavioral basis of ST (Chang et al. 2012, 2015; Holland et al. 2014; DeAngeli et al. 2017). Another line of research to study incentive motivation has used a single-lever CS+ paradigm, where no CS− is presented (Day et al. 2006; Flagel et al. 2007; Robinson and Flagel 2009; Tomie et al. 2012; Fitzpatrick et al. 2013). For this experiment, we sought to determine whether the sensitivity of ST behavior to reward devaluation described above also extends to the single lever CS+ paradigm. To do so, we compared the sensitivity of ST to reward devaluation in a manner identical to Experiment 1 with a single CS+ lever design between groups LiCl-Pellet (n = 8) and Saline-Pellet (n = 8). For these sessions, there were 25 trials in which only the CS+ lever was inserted and the ITI was the same as before (60 sec). Magazine entry data throughout the experiment was examined and all figures and statistics can be found in Supplemental Figure 1 and Supplemental Table 1.
Acquisition

The mean ppm for each group over the course of training are presented in Figure 3B. A linear mixed model was used to analyze CS+ responding by group and session.

There was no significant effect of group (estimate: 2.89; CI: −5.90–11.67; P = 0.523), indicating that, overall, Group Saline-Pellet and Group LiCl-Pellet did not differ in their response rates. There was a significant effect of logSession (estimate: 5.94; CI: 1.89–9.98; P = 0.009), showing that over the course of training, animals significantly increased their lever interactions. However, there was no effect of the interaction between Group and logSession (estimate: 0.39; CI: −5.32–6.11; P = 0.894), indicating that the two groups did not differ in how they increased their lever presses over the course of training. Curiously, magazine entries did not significantly decrease over sessions in the same manner as they did in the other experiments (Supplemental Fig. 1G). We found this was the result of just one rat that both interacted with the lever and entered the magazine during its presentation.

Outcome devaluation

The mean percentage of pellets consumed on each devaluation day is presented in Figure 3C. Here, there were effects of Session (OR: 1.43, CI: 1.21–1.67, P = 0.001), Group (OR 265.07, CI: 94.06–747.02, P < 0.001), and a significant Group by Session interaction (OR: 3.71, CI: 3.16–4.35, P < 0.001). Again, there was a significant rebound in pellet consumption in LiCl-Pellet from Day 2 to Day 3 of outcome devaluation (V = 0, P = 0.022), suggestive of poor taste-aversion generalization. These effects show that rats in Group Saline-Pellet consumed more pellets than rats in Group LiCl-Pellet.

Devaluation sensitivity in extinction

Responding during pre- and postdevaluation extinction sessions are compared in Figure 3D. Again, there was no effect of Group (estimate: 24.17, CI: −6.19–54.54, P = 0.130) or Session (estimate: −4.92, CI: −16.84–6.99, P = 0.430). However, there was an effect of the interaction between Group and Session (estimate: −19.82,
Devaluation sensitivity in reacquisition

Next, pre- and postdevaluation reacquisition sessions were compared. ST rates during these reacquisition sessions are presented in Figure 3E. There were effects of Group (estimate: 28.76, CI: 1.52–56.00, P = 0.047) and Session (estimate: 10.61, CI: 0.88–20.34, P = 0.048) and a significant interaction between Group and Session (estimate: –28.13, CI: –41.90––14.36, P = 0.001). Magazine entries were also examined with no effects observed (Supplemental Fig. 1H). Together, these data indicate that groups differed in ST behavior changes over sessions; namely, Group LiCl-Pellet decreased their ST in response to devaluation between the two probe sessions.

Outcome devaluation

The mean number of days required for animals in the two groups to reject all but one pellet is presented in Figure 4C. Interestingly, it took animals in Group IN significantly more sessions to reject pellets (t_{99} = –20.82, P < 0.001). There are a couple of possibilities to explain this difference in time to reach complete devaluation. First, the animals in Group OUT received a larger amount of food to consume than the animals in Group IN received. Group IN rats were given a smaller amount of total food to avoid clogging the food delivery tube in later pairings. This difference was most pronounced for the first pairing, in which rats in Group OUT ate close to 10 g on average, whereas rats in Group IN ate ~3.5 g. Therefore, greater consumption during the first pairing may have resulted in stronger taste aversion learning, and a faster decline to zero consumption. A second possibility, not exclusive of the first, is that taste aversion learning in the operant chambers (Group IN) may have been slowed due to latent inhibition. Repeated prior experience of the rewarded outcome with the conditioning chambers may have interfered with new learning that the grain pellets, when delivered to the food magazine, now result in illness. We emphasize that both groups reached a point of essentially zero consumption, reflecting a complete devaluation of the pellet reinforcer in their respective contexts.

Devaluation sensitivity in extinction

Mean lever press rates by group and day are presented in Figure 4D. Note that lever press rates shown are for the final training session, Training Day 12, and the extinction probe session. While there was no effect of Group (estimate: –19.03, CI: –43.30–5.24, P = 0.132), there were significant effects of Session (estimate: –16.61, CI: –25.26––7.96, P < 0.001) and the interaction between Group and Session (estimate: 15.70, CI: 3.46–27.93, P = 0.021). Magazine entries were also examined with no effects observed (Supplemental Fig. 1K). This shows that, overall, the animals in the two groups did not differ in their ST rates but there was a drop in ST following outcome devaluation, showing that across all subjects, devaluation reduced incentive lever pressing. Importantly, the significant interaction between Group and Session shows that animals in Group IN decrease ST behavior more than those animals in Group OUT.
though it possessed sensory and motivational properties of the reward itself. There has been a surge of interest in characterizing the behavioral profile of ST animals (Hughson et al. 2019) in part because the ST phenotype is thought to indicate vulnerability to addiction, and it can be used as a preclinical model for the excessive motivational pull of drug-predicting stimuli (Saunders and Robinson 2013; Tomie and Sharma 2013; Huys et al. 2014). For these reasons, it is important to characterize the mechanisms of ST, and the conditions under which ST may respond to environmental or behavioral manipulations.

Here we conducted a series of experiments that investigated the effects of LiCl outcome devaluation on ST performance. Our results show that when devaluation includes multiple pairings in the training context, ST behavior is indeed sensitive to reinforcer devaluation. In Experiments 1, 3, and 4, ST behavior significantly decreased in extinction for animals that received LiCl-reinforcer pairings that included pairings in the training context. In Experiment 2, there was a trend toward lower responding in Group LiCl-Pellet, but this trend did not reach significance. For control animals who did not receive LiCl paired with the reinforcer, or who received those pairings exclusively outside of the conditioning context (Group OUT in Experiment 4), the average ST rate was largely unchanged in extinction (Experiments 2–4) or was even slightly elevated (Experiment 1). Overall, these results agree with classic demonstrations of reinforcer devaluation effects on Pavlovian conditioned responses (Holland and Straub 1979; Hatfield et al. 1996; Gallagher et al. 1999) and on goal-directed actions (Dickinson 1985). They indicate that ST behavior, at least when it comes to postraining outcome manipulations, is not different from other forms of Pavlovian conditioning. The fact that ST was devaluation-sensitive—even after extensive training (12 d)—supports the notion that ST behavior is governed, at least in part, by an expectation of the outcome.

Devaluation sensitivity is often talked about in an absolute manner. However, it should be kept in mind that any test of outcome sensitivity is conducted using a specific devaluation protocol, and the parameters for conducting outcome devaluation vary considerably. The most common techniques used to manipulate the desirability of the outcome are selective satiety (Holland and Rescorla 1975; Gremel and Costa 2013; De Tommaso et al. 2017) and reinforcer devaluation with LiCl (Adams 1982; Smith et al. 2012), although there are others, including high-speed rotation to induce nausea (Holland and Straub 1979) or outcome inflation by means of extended food deprivation (Quinn et al. 2013) or nutrient depletion (Berridge et al. 1984; Tordoff 2001). Just considering devaluation with LiCl, protocols differ along a number of dimensions, including the type of reinforcer used in training, the number of devaluation pairings, the concentration of LiCl, the method of delivery of the reinforcer, the type of control group used, and the context in which devaluation takes place. Previous work has shown...
that these factors can result in meaningful differences in task performance under postdevaluation extinction conditions. For example, a liquid reinforcer delivered directly into the oral cavity is better able to engender a complete devaluation effect than is a traditionally consumed reinforcer (Colwill and Rescorla 1990). In a different example, simple reexposure to the devalued outcome before testing produced a greater devaluation effect than a single pairing alone (Lopez et al. 1992). Findings like these indicate that it is important to take into account the specific procedure when comparing outcome devaluation effects across studies.

There are at least a couple of steps that need to take place for devaluation to affect behavior. First, the aversion to the outcome learned during the devaluation phase must transfer to the testing context. This updated outcome value must be represented or retrieved in some way from memory and be “online” during the extinction test if behavior is to be sensitive. Even if devaluation is performed, say, in the same environment as the task, the devaluation experience is subtly different than task performance and could result in less-than-perfect outcome sensitivity as a result. Second, knowledge about the outcome must influence the ST response itself. Even if the outcome is recognized to be aversive in that situation, that information needs to then influence behavior. This is similar to the distinction between goal-directed actions and habits. The lever cue might trigger a stimulus-response association that overrides any consideration of outcome value. Importantly, the presence of the behavioral response (e.g., ST) does not unequivocally mean that responding is habitual or inflexible. It could be due to a failure of generalization (first step above). This can be measured by offering animals access to the aversive outcome in a reacquisition test conducted in the same context as extinction. If the now-aversive outcome is rejected, then one can infer that devaluation successfully transferred to the testing context, whether or not the conditioned response was suppressed. In principle, given that the aversion must generalize to the task environment as well as to the behavior leading to the outcome, it may be important to consider generalization to the behavior itself as a factor involved in interpreting the behavior as goal-directed vs. habitual (beyond the underlying associative structure of behavior).

Historically, investigators have come to varying conclusions about the effectiveness of outcome devaluation tests. Colwill and Rescorla (1985) point out that numerous studies, even at that time, found diverse evidence either for (Chen and Ansel 1980; Adams and Dickinson 1981; Adams 1982; Dickinson et al. 1983; St. Claire-Smith and MacLaren 1983) or against (Garcia et al. 1970; Morrison and Collier 1974; Holman 1975; Adams 1980; Wilson et al. 1981) outcome devaluation effects on behavior. Some variables, like the type of reinforcement schedule (e.g., a variable interval encourages habits more rapidly than a fixed ratio schedule) and amount of training, could account for some of these differences (Dickinson et al. 1983; Colwill 1988), but not all (e.g., Colwill and Rescorla 1985). Our central result, that ST is sensitive to outcome devaluation, stands in contrast to several recent reports to the contrary (Morrison et al. 2015; Nasser et al. 2015; Patitucci et al. 2016). One important procedural difference between these recent reports and our experiments (as well as that of Derman et al. 2018, below) is the context of the devaluation pairings.

In the study by Nasser et al. (2015), the authors examined the relationship between Pavlovian outcome devaluation and ST tendency. Animals learned to respond to a light cue with standard Pavlovian conditioning. They then received two pairings of food reward with LiCl in their home cages. In an extinction session, rats showed a modest but significant difference in the time spent in the food cup between LiCl paired and unpaired groups (Fig. 1C in that paper). Later, rats were trained in a discriminative autoshaping procedure. Their terminal degree of ST was correlated with their response to the Pavlovian light cue (devaluation insensitivity). The authors concluded from this study that ST rats have a general difficulty displaying flexible behavior. However, the devaluation sensitivity of ST specifically was not measured. In addition, it may be that a stronger devaluation protocol (in the test chambers) would have resulted in ST rats significantly reducing their responding. We can conclude from this study that non-ST rats were responsible for a modest devaluation effect, and that they showed more flexibility than ST rats with this protocol. The study by Morrison et al. (2015) measured the devaluation sensitivity of ST directly. Rats underwent 7–15 d of autoshaping training for sucrose reward and then received a single pairing of sucrose with LiCl in their home cages. Rats then underwent a probe session in extinction and their sucrose consumption was measured again afterward in the home cage. The authors found that ST tendency actually increased after reward devaluation, as least in comparison with GT tendency. In the probe session, goal-trackers emitted fewer entries into the reward magazine, with a concomitant increase in ST behavior that was perhaps compensatory. Sign-trackers showed little change in either behavior, although the subject pool had few, if any, conventionally defined ST rats (i.e., Pavlovian Conditioned Approach index between 0.5 and 1.0). The devaluation procedure here was relatively weak, involving one pairing in the home cage. Postdevaluation consumption of the devalued reward was not measured in the test chambers, so it is unknown if the subjects generalized their conditioned taste aversion (CTA) to the testing context. These results are somewhat in conflict with the study by Nasser et al. in that, here, GT rats showed more lever-directed behavior in the test session.

Overall, both the studies by Nasser and Morrison found a distribution of responses to outcome devaluation, with ST animals showing little change in behavior postdevaluation. However, both studies used relatively mild devaluation protocols; either one or two pairings with LiCl in the home cage environment. Therefore, the persistence of ST in these studies may be due to a failure for animals to transfer devaluation learning to the testing context. In the case of Morrison et al. consumption was reduced, but not eliminated in a postdevaluation test in the home cage, and not measured in the testing context. It is important to confirm that there is a strong rejection of the devalued food reward in the testing context, as any residual value of the food reinforcer could support conditioned responding in extinction (Colwill and Rescorla 1985).

This latter point is also relevant for a study conducted by our group (Smedley and Smith 2018), in which it was found that ST behavior in extinction was unchanged after extensive LiCl devaluation (3–5 pairings). These pairings took place in a nontask environment (the transport boxes). Surprisingly, ST rate during a reacquisition session was also largely unchanged; that is, even with the opportunity to sample the devalued food after its associated action in the task context. In this study, consumption of the devalued food reward was measured in the devaluation context and not in the operant chambers. In a reacquisition test, rats that received two lever stimuli in sequence ate nearly all pellets (~45/50 pellets consumed, Fig. 4D of that paper). However, animals that received only one lever stimulus consumed fewer pellets, but still far more than half (~35/50 pellets consumed, Fig. 2D of that paper). The difference in consumption between groups that received different cues indicates that task differences can affect how food aversion transfers to the task.

Overall, these results agree with the prior two studies in that devaluation pairings outside of the test chambers result in relatively little change in ST behavior in extinction, but this may be attributable to a failure of the conditioned food aversion to transfer to the task context. In a different study, using a conditioned lever stimulus—similar to autoshaping—devaluation likewise resulted in little change in ST behavior in extinction (Vandaele et al. 2017).
The amount of consumption of the devalued food was high (~50%, measured in the operant chamber), and the LiCl pairings were performed in the home cage. These results match our data from Experiment 4, in which rats that underwent devaluation in a different environment (Group OUT) ate well over 50% of the pellets in reacquisition. Unsurprisingly, rats in Group OUT also showed no change in ST during either extinction or reacquisition. These considerations pose a problem for the interpretation that ST is devaluation insensitive and inflexible in the classical sense (Morrison et al. 2015; Nasser et al. 2015). Instead, the insensitivity of ST to devaluation is better understood as a failure to generalize learning—in this case, CTA—when learning takes place in a different context.

Our results more closely agree with those of Derman et al. (2018). In that study, rats were trained on a two-lever ST task in which every lever was paired with a different food outcome. After 12 d of training, rats underwent five cycles of LiCl pairing in the operant chambers. ST was significantly lower for the lever paired with the devalued reward as compared to the lever paired with the nondevalued reward (Fig. 1A; Derman et al. 2018). In a between-subjects experiment using a discriminative autoshaping task (similar to ours) with the same method of devaluation as before, ST rate was reduced by ~75% in the extinction sessions. This result matches our data presented here. When the devaluation protocol contains several pairings in the operant chamber, ST behavior in extinction was significantly reduced (Experiments 1, 3, and 4). This is a consequence of the fact that taste aversion successfully transferred to the task context, as measured by reacquisition consumption. Likewise, when taste aversion transfers, ST during reacquisitiion is further reduced over and above the reduction in extinction (Experiments 1–4), perhaps reflecting incentive learning processes (Lopez et al. 1992). When instead, the taste aversion does not transfer to the task context, because of a too-great dissimilarity in the conditioning and testing environments, then ST remains high. Thus, transfer of the taste aversion to the task and the effect of the aversion on ST seem to be highly related. When rats generalize taste aversion to the task, ST behavior is reduced, a signature of goal-directed or model-based behavioral control. This highlights the importance of taking context effects into account when making interpretations about the underlying associative structure of the behavior (i.e., habit vs. goal-directed).

While it is well known that taste-nausea associations are relatively easy to condition (in comparison to other classes of events—the “Garcia effect”), the role of contextual cues in CTA learning is not well understood. There is extensive evidence that the ability of new reward-related information to reduce responding in tasks can be remarkably context-dependent, such as for extinction of instrumental learning (Bouton and Todd 2014). Interestingly, there is evidence that contextual factors (also called “exteroceptive stimuli”) are important for CTA learning as well. A learned aversion to drinking saccharin solution was greatly attenuated when animals were tested in a dissimilar context: importantly, the aversion they initially learned was still active when returned to the original context (Archer et al. 1979, 1984; Sjödén and Archer 1981). This effect parallels that of some of the studies mentioned here and our data from Experiment 4 (Fig. 4F), in which rejection of the devalued food pellets in reacquisition is nearly complete when tested “in-context,” but greatly diminished or absent when tested “out-of-context.”

An important consideration to note in Experiment 4 lies in how many reinforcer pairings were given during the devaluation protocol. Group OUT received 3 pairings, and Group IN received 6–7 pairings. While both groups reached the same endpoint of rejecting the devalued pellets during taste-aversion training, it remains possible that the greater number of pairings given to Group IN could have resulted in a longer-lasting taste aversion memory, and this could in part account for the greater pellet consumption in reacquisition among rats in Group OUT. Group IN rats took longer to reach the devaluation threshold, and therefore they received more pairings. This may be due to a process such as latent inhibition (Turgeon and Reichstein 2002), whereby prior experience with pellet consumption in the conditioning chambers (i.e., the ST acquisition phase) slowed down the process of acquiring the new pellet-nausea association. Further experiments are needed to isolate number of pairings and the terminal degree of devaluation as factors that contribute to the longevity of conditioned taste aversion.

Devaluation sensitivity is a graded measure and it is most accurate to imagine it on a continuum, rather than categorically. In instrumental behavior, responding after devaluation can be divided into a sensitive, goal-directed component, and a habitual, insensitive component (Thrailkill and Bouton 2015). The ability of devaluation learning to affect performance depends on the nature of the underlying association (goal directed vs. habitual) as well as the ability for the aversion learning to transfer to the testing context, perhaps analogous to a generalization gradient. It may be that the relative inability to generalize outcome value learning itself is a signature of habitual behavior. For example, Thrailkill and Bouton (2015) found that the habitual component of instrumental behavior was more sensitive to a switch in context than the goal-directed component. Additionally, another way to conduct outcome devaluation is via sensory-specific satiety and this, too, shows signs of context dependency (Parkes et al. 2016). Although ST is considered as having a major Pavlovian learning component, there may be parallels between the context dependence of instrumental learning and extinction and what we review here for ST. Changes to outcome value, when divorced from the learning context, have relatively little impact on postdevaluation ST (Morrison et al. 2015; Vandaele et al. 2017; Smedley and Smith 2018). When outcome value is strongly reduced in the training context, ST behavior shows flexibility and sensitivity to it (our data here; Derman et al. 2018). Importantly, in these data and in much of the literature on outcome sensitivity in behavior, the level of devaluation in the task rarely reaches 100% (i.e., animals exhibit some intake of the devalued outcome in the task, even if minimal, when given sufficient trials). Residual responding in such cases, whether ST behavior here or instrumental behavior in other studies, could reflect either (1) a habit component, or (2) the fact that the outcome is still not completely devalued. In other words, it will be important in studies of habits using the outcome devaluation procedure to consider to what extent habit-like responding after devaluation reflects a habit or rather a less-than-complete transfer of outcome devaluation knowledge to the task conditions.

Materials and Methods

Experiment 1

Subjects

Subjects were experimentally naïve male Long Evans rats obtained from Charles River (n = 16; Charles River), which weighed 250–300 g upon arrival. Rats were pair-housed in a climate-controlled colony room illuminated from 7:00 A.M. to 7:00 P.M. Following an acclimation period of 7 d, animals were individually housed and put on a food-restriction schedule to maintain body weights at 85% of their ad libitum weights for the duration of the experiment. The experiments were performed in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals; protocols were approved by the Dartmouth College Institutional Animal Care and Use Committee.

Apparatus

ST training and testing was carried out in eight identical operant conditioning chambers (24 × 30.5 × 29 cm; Med Associates),
enclosed in sound-attenuating chambers outfitted with an exhaust fan to provide airflow and background noise (~68 dB). The chambers were illuminated by a house light on the back wall of the chamber. Each chamber contained a recessed food magazine in the center of the front wall. Retractable levers (Med Associates model: ENV-112CM) were positioned on either side of the food magazine. Lever deflections were automatically recorded. Magazine entries were recorded through breaks of an infrared beam. Data were acquired through MED-PC software (Med Associates).

Behavioral training

The sequence of training phases is presented in Figure 1A. All rats first received a single 30-min acclimation session of magazine training where grain pellets (Bio Serv, Product #F0165, 45 mg dustless precision pellets: Protein 21.3%, Fat 3.8%, Carbohydrate 54.0%) were delivered freely on a random-time 30 sec (RT30) schedule. Next, rats underwent 12 daily, 60-min sessions of discriminative training. During each training session, rats received 25 conditioned stimulus (CS+) trials and 25 CS− trials, such that no more than two of the same trial type occurred in a sequence. Each trial consisted of a 10 sec lever presentation, but only CS+ trials were followed by delivery of two food pellets upon lever retraction. The assignment of left and right levers to CS+ and CS− identities was counterbalanced within groups of animals but held constant per animal. Training was followed by one abbreviated lever devaluation test session (5 CS+, 5 CS− presentations) conducted in extinction conditions to establish a baseline level of responding. The next day, rats were given one rewarded reacquisition session (25 CS+, 25 CS− presentations).

Outcome devaluation and postdevaluation testing

Rats were split into two groups based on mean lever press rates and standard error of the mean such that groups had matched responding levels by Day 12 of training. After group assignment, rats were exposed to an outcome devaluation procedure. Devaluation of the grain pellets was carried out in two phases; rats received up to five pairings. The first and second pairings took place in plastic holding boxes, as previously described (Smedley and Smith 2018), while subsequent pairings took place in the Med Associates conditioning chambers. This procedure was chosen because it was thought that a variety of contexts for devaluation would allow animals to best generalize the CTA beyond the holding chambers. In separate experiments in our laboratory, we found that doing devaluation exclusively in the holding boxes or in empty cages resulted in many animals consuming many, if not most, of the pellets during reacquisition (data not shown). We speculated that adding pairings inside the conditioning chambers would strengthen the association between the aversive food outcome (pellets) and the response (lever pressing) that had previously coincided with food delivery.

For the first and second pairings, animals were given 10 g of pellets in a plastic dish in clear plastic holding boxes normally used for transport between the colony and testing room. Rats were allowed 20 min to consume pellets. The plastic dishes were then removed from the holding boxes, rats were injected with either lithium chloride, termed Group LiCl-Pellet (LiCl; 0.3 M; 10 mg/kg in deionized water) or 0.9% saline, termed Group Saline-Pellet. Then, the remainder of the pellets were weighed, and weights of the rats were recorded. Rats stayed in the boxes for an additional 20 min following the injection and were then returned to their home cages. After 48 h, this devaluation procedure was repeated.

The third and subsequent pairings were conducted in the conditioning chambers. Again, these pairings were spaced 48 h apart. For these days, pellets were delivered on the RT30 schedule previously used during magazine training. Levers were not extended during these sessions. To avoid clogging of the magazine with pellets, pairings 3–5 were successively shorter in length, as animals in Group LiCl-Pellet rejected more pellets over time which increased the likelihood on test pellets backing up within the delivery tube. At the conclusion of these sessions, animals were removed from the conditioning chambers, held briefly in the plastic holding boxes, and the number of pellets consumed was recorded. Then, animals were injected with either LiCl or saline, based on their group assignment, and allowed to rest for 20 min in the conditioning chambers. Once an animal consumed 1 or fewer pellets during devaluation, it was advanced to postdevaluation probe sessions. These consisted of a brief extinction session (5 CS+, 5 CS− presentations) followed by an abbreviated, fully rewarded, reacquisition session (15 CS+, 15 CS− presentations) to assess ST persistency in the face of devalued reward.

Behavioral measures and analyses

Lever deflections, magazine entries, and time spent in the magazine area were recorded through MED-PC. During outcome devaluation, pellets were weighed before and after consumption to calculate the percentage of grams consumed. All statistical tests were carried out using R (R Core Team 2016). All graphs were created through R (R: "ggplot2") and designed with Adobe Illustrator.

Zero-sum contrasts were made for categorical variables where appropriate (e.g., Group Saline-Pellet vs. Group LiCl-Pellet). Individual linear mixed models (R: "lmerMod") were used to analyze effects of dependent variable responding (e.g., lever presses per minute, ppm) by fixed effects of experimental group, logSession, CS-type, and the interactions between these variables while accounting for random effects of differences in individual starting press rates and individual learning rates over sessions. LogSession, created by logarithmically transforming session, was used to model training data as models using logSession were fit data statistically better than models using linear session alone as determined by Akaike information criterion for nonnested model comparison (see Smedley et al. 2019 for a similar application). Linear mixed models were fit by maximum likelihood and t-tests used Satterthwaite approximations of degrees of freedom (R: "lmerTest") (Kuznetsova et al. 2017).

As percentage data are not normally distributed, a generalized linear mixed model was used to analyze effects of devaluation and session on pellet consumption during outcome devaluation. Session was recentered to assess group differences in consumption on Day 5, the final day of outcome devaluation. Odds ratios, confidence intervals, and P-values are reported. Post-hoc Wilcoxon signed rank tests with continuity corrections were used to assess whether animals in Group LiCl-Pellet increased the proportion of pellets consumed on Day 2 and Day 3 of outcome devaluation. Notably, Day 3 of outcome devaluation is the first day that animals are reintroduced to the operant chamber context and given access to pellets.

Responding in the postdevaluation extinction session (ppm) was compared with responding in the predevaluation extinction session by creating individual linear mixed models to assess response rates by fixed effects of group, session, and the interaction between group and session while accounting for random effects of individual starting points. Responding in the postdevaluation reacquisition session was similarly compared with responding in the predevaluation reacquisition session.

Experiment 2

Subjects and behavioral training

Subjects were 16 experimentally naive male Long Evans rats obtained from the same vendor as in Experiment 1 and maintained under the same conditions. The apparatus was the same as in Experiment 1. Rats underwent 1 d of magazine training and 12 d of autoshaping training as in Experiment 1. Data collection methods and analyses were the same as in Experiment 1.
Outcome devaluation and postdevaluation testing

Outcome devaluation procedures were similar to those described for Experiment 2. Rats in Group LiCl-Pellet (n = 8) were given grain pellets (as described above) in the holding boxes (days 1–2) and operant chambers (days 3–5) before being injected with LiCl solution. Rats in Group LiCl-Only (n = 8) spent the same amount of time in the boxes and conditioning chambers but received no food before receiving injections of LiCl. Once animals in Group LiCl-Pellet consumed no more than 1 pellet each, no further injections of LiCl were administered, and animals were advanced to a brief postdevaluation extinction session (5 CS+, 5 CS− presentations). Following this extinction session, a reacquisition session (15 CS+, 15 CS− presentations) was administered.

Experiment 3

Subjects and behavioral training

Subjects were 16 experimentally naïve male Long Evans rats obtained from the same vendor as in Experiment 1 and maintained under the same conditions. The apparatus was the same as in Experiment 1. Data collection methods and analyses were the same as in Experiment 1, with the exception that there were no CS− trials. Sessions lasted for 30 minutes and consisted of 25 CS+ trials (left and right lever positions were counterbalanced across subjects). The Intertrial interval was the same as in the other experiments (average 60 sec).

Outcome devaluation and postdevaluation testing

Outcome devaluation took place in the same manner as in Experiment 1. After pellet consumption, subjects in Group LiCl-Pellet (n = 8) received injections of LiCl solution, whereas subjects in Group Saline-Pellet (n = 8) received saline injections. Once animals in Group LiCl-Pellet rejected all pellets, no further injections of LiCl were administered, and animals were advanced to a postdevaluation extinction session (5 CS+ presentations). Following this extinction session, an abbreviated reacquisition session (15 CS+ presentations) was administered.

Experiment 4

Subjects and behavioral training

The subjects were 20 experimentally naïve male Long Evans rats obtained from the same vendor as in Experiment 1 and maintained under the same conditions. The apparatus was the same as in Experiment 1. The sequence of training phases is presented in Figure 4A. Rats underwent 1 d of magazine training and 12 d of autoshaping training as in Experiment 1. Data collection methods and analyses are the same as in Experiment 1. 12 subjects underwent surgery and were injected with a control virus as part of a separate study (see above). In addition, eight control rats that did not receive surgery were added to the previous 12, for a total of 20 subjects (Table 1). Training for the autoshaping task was the same as in the above experiments.

Surgical procedures for control virus subjects

All surgeries were performed under aseptic conditions with isoflurane anesthesia, and all infusions were made with a 10 µL syringe equipped with a 36-gauge beveled needle (World Precision Instruments) and a Quintessential Stereotaxic Injector (Stoelting). Bilateral infusions of CAV2-Cre were made into the amygdala at −3.0 mm posterior from bregma, 5.0 mm from the midline, and 5.0 mm ventral from the skull surface. Injection volume at each site was 0.5 µL. Expression of these transgenes was allowed to take place over the course of at least 3 wk before the commencement of behavioral training.

Outcome devaluation and postdevaluation testing

For rats in Group IN (n = 10), subjects were placed in the same conditioning chambers as in training. Pellets were delivered on the RT30 schedule previously used during magazine training. The levers were not extended during these sessions. After 30 min, animals were removed from the conditioning chambers and briefly held in plastic transport boxes while the leftover pellets were removed (and later counted). Rats were injected with LiCl and returned to the conditioning chambers for at least 20 min. This process was performed again after 48 h. This consisted of up to 7 d of pellet pairings, determined by whether animals were at or below a threshold of pellet consumption defined by experimenters a priori as each group averaging less than one pellet consumed each day.

For rats in Group OUT (n = 10), subjects were placed in clear plastic tubs, with a metal food cup that contained 10 g of grain pellets. After 20 min, the food cups were removed, and the weight of leftover pellets later measured. Rats were injected with LiCl, as above, and allowed to rest for at least 20 min before being returned to the animal colony. This process was performed again after 48 h, with animals receiving a total of three LiCl pairings.

In order to measure the persistence of ST behavior after devaluation, animals were returned to the conditioning chambers and ran the same autoshaping task in extinction. In the analyses below, only the first 5 CS+ and first 5 CS− trials were analyzed. The following day, animals ran an additional reacquisition session with pellet delivery as normal. The reacquisition session was used to test the degree to which animals were able adjust their behavior when exposed the now devalued food outcome. Animals that underwent surgery with control virus received injections of clozapine-n-oxide (CNO; 1 mg/kg; National Institute of Mental Health’s Chemical Synthesis and Drug Supply Program) 30 min prior to testing on the extinction and reacquisition sessions. CNO is an inert ligand in the absence of DREADD receptors (Armbruster et al. 2007), and is expected to have no effect on behavior in control animals lacking DREADD receptors. Anecdotally, we have seen no difference in ST between control animals treated with CNO and naïve animals.

Acknowledgments

We thank Shawn Ohazuruike, Shenandoah Wrobel, and Kendall Raymond for help running the experiments, and Elizabeth Smedley and Alex DaSilva for statistical support. This work was funded by grants to K.S.S. (National Institutes of Health (NIH) R01DA044199; National Science Foundation (NSF) IOS 1557987), K.A.A. (NIH F99NS115270; NSF GRFP DGE-1313-911), and J.J.S. (NIH T32DA03720).

References

Adams CD, Dickinson A. 1981. Instrumental responding following surgery with control virus received injections of clozapine-n-oxide (CNO; 1 mg/kg; National Institute of Mental Health’s Chemical Synthesis and Drug Supply Program) 30 min prior to testing on the extinction and reacquisition sessions. CNO is an inert ligand in the absence of DREADD receptors (Armbruster et al. 2007), and is expected to have no effect on behavior in control animals lacking DREADD receptors. Anecdotally, we have seen no difference in ST between control animals treated with CNO and naïve animals.

Surgical procedures for control virus subjects

All surgeries were performed under aseptic conditions with isoflurane anesthesia, and all infusions were made with a 10 µL syringe equipped with a 36-gauge beveled needle (World Precision Instruments) and a Quintessential Stereotaxic Injector (Stoelting). Bilateral infusions of CAV2-Cre were made into the amygdala at −3.0 mm posterior from bregma, 5.0 mm from the midline, and 5.0 mm ventral from the skull surface. Injection volume at each site was 0.5 µL. Additionally, rats received bilateral infusions into the orbitofrontal cortex, at 3.9 mm posterior to bregma, 3.0 mm from the midline, and 4.4 mm ventral from the skull surface, of the control virus AA8-hSyn-DIO-mCherry (Addgene). Injection volume at each site was 0.5 µL. Expression of these transgenes was allowed to take place over the course of at least 3 wk before the commencement of behavioral training.

Outcome devaluation and postdevaluation testing

For rats in Group IN (n = 10), subjects were placed in the same conditioning chambers as in training. Pellets were delivered on the RT30 schedule previously used during magazine training. The levers were not extended during these sessions. After 30 min, animals were removed from the conditioning chambers and briefly held in plastic transport boxes while the leftover pellets were removed (and later counted). Rats were injected with LiCl and returned to the conditioning chambers for at least 20 min. This process was performed again after 48 h. This consisted of up to 7 d of pellet pairings, determined by whether animals were at or below a threshold of pellet consumption defined by experimenters a priori as each group averaging less than one pellet consumed each day.

For rats in Group OUT (n = 10), subjects were placed in clear plastic tubs, with a metal food cup that contained 10 g of grain pellets. After 20 min, the food cups were removed, and the weight of leftover pellets later measured. Rats were injected with LiCl, as above, and allowed to rest for at least 20 min before being returned to the animal colony. This process was performed again after 48 h, with animals receiving a total of three LiCl pairings.

In order to measure the persistence of ST behavior after devaluation, animals were returned to the conditioning chambers and ran the same autoshaping task in extinction. In the analyses below, only the first 5 CS+ and first 5 CS− trials were analyzed. The following day, animals ran an additional reacquisition session with pellet delivery as normal. The reacquisition session was used to test the degree to which animals were able adjust their behavior when exposed the now devalued food outcome. Animals that underwent surgery with control virus received injections of clozapine-n-oxide (CNO; 1 mg/kg; National Institute of Mental Health’s Chemical Synthesis and Drug Supply Program) 30 min prior to testing on the extinction and reacquisition sessions. CNO is an inert ligand in the absence of DREADD receptors (Armbruster et al. 2007), and is expected to have no effect on behavior in control animals lacking DREADD receptors. Anecdotally, we have seen no difference in ST between control animals treated with CNO and naïve animals.

Received October 30, 2019; accepted in revised form December 31, 2019.
Sign-tracking behavior is sensitive to outcome devaluation in a devaluation context-dependent manner: implications for analyzing habitual behavior

Kenneth A. Amaya, Jeffrey J. Stott and Kyle S. Smith

Learn. Mem. 2020, 27:
Access the most recent version at doi:10.1101/lm.051144.119

Supplemental Material
http://learnmem.cshlp.org/content/suppl/2020/02/26/27.4.136.DC1

References
This article cites 71 articles, 9 of which can be accessed free at:
http://learnmem.cshlp.org/content/27/4/136.full.html#ref-list-1

Creative Commons License
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.